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NOMENCLATURE
a rotor blade two-dimensional 1ift curve slope
A rotor disk area, '1rR2
c rotor blade chord
ey rotor blade section drag coefficient (at zero 1ift)
cq rotor torque coefficient, @/ AR(SLR)?
Con rotor thrust coefficient, T/3 A(ﬂl’t)2
Og, initial thrust coefficient, W/{SA(SLﬁ)z
" T rotor stall limit
Cx CT sin o¢
Cz CT cos ™
d /LR
D helicopter parasite drag
e x/SL R
f helicopter equivalent parasite drag area
fG ground effect factor in induced velocity

fI(x.y) induced velocity curve
g acceleration due to gravity
g, &/ 2R
h

helicopter vertical position coordinate (measured downward
from the initial altitude)

helicopter altitude above ground at power loss

¢ vertical velocity at ground contact 3
rotor blade flap inertia §
IR total rotor rotational inertia, N'.[.b
optimal control cost function
v/LR

helicopter mass

number of blades

stall parameter

helicopter vertical load factor
rotor torque

roter blade radius

time

rotor thrust
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rotor induced velocity .
('r/zsslx)'%1 ‘
(%° + h%)?

helicopter velocity at ground contact

helicopter gross weight

weighting factor in J, on ho. izontal velocity relative to j
vertical velocity

heliropter horizontal position coordinate
vertical veloclty parameter in inflow curve
horizontal velocity at ground contact

horizontal veloclity parameier in inflow curve

eIt

angle of rotor thrust vector from vertical

rotor Lock number, %acﬁu/lb

angle of heiicopter velocity from horizontal, tan-l(-ﬁ/i)
rotor collective pitch

empirical factor on induced velocity "
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ToOtoYr inflow ratio (tip-path-plane reference)
(c4/2)?

rotor advance ratio (tip-path-plane reference)
air density

rotor solidity ratio, Nc/wR

induced velncity time lag
.z

/0.
rotor rotatlonal speed
initial value of rotor rotational speed

initial value

a( )/at
a( )/an
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HELICOPTER OPTIMAL DESCENT AND LANDING
AFTER POWER LOSS

Wayne Johnscn®

Ames Re =arch Center
and
Ames Directorate, USAAMRDL

SUMMARY

An optimal control solution is obtained for the descent and landing
of a helicopter after the loss of power in level flight. The model considers
the helicopter vertical velccity, horizontal velocity, and rotor speed;
and it includes representations of ground effect, rotor inflow time lag,
pilot reaction time, rotor stall, and the induced velocity curve in the
vortex ring state. The control (rotor thrust magnitude and direction)
required to minimize the vertical and horizontal velocity at contact with
the ground is obtained using nonlinear optimal control theory. It is found
that the optimal descent after power loss in hover is a purely vertical
flight path. Good correlation, even quantiitatively, 1s found between the
calculations and (non-optimal) flight test results. The optimal control
solution is thus a consistent and accurate methoc 1 'r comparing and evaluating
the power-off descent characteristics of various he..copter designs.

INTRODUCTION

Good autorotation characteristics during descent after power loss
are essential for a useful and safe helicopter design, While 1t is known
that the helicopter rotor has 2 minimum descent rate in vertical autorotation
about the same as a parachute of equal size, there are other questions which
require consideration. First, the helicopter rotor is a rather small parachute,
so the ideal deseent rate can be fairly high (V& 1.16('r/a)* n/sec, where
T/A 1s the disk loading in kg/nZ). This high basic descent rate increasas

*Research Scientist, Large Scale Aerodynamics Branch, NASA-Amos Research Center
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the importance of other parameters in the power-off landing maneuver.
Secondly, it 1s necessary to fly the helicopter in a manner to achieve
the least descent rate, and most importantly to flare near the ground so
that the helicopter touches down with vertical and horizontal velocities

as nearly zero as possible.

It is desirable to have in the nreliminary design process a means
of assessing the influence of basic parameters on the helicopter autorotation
characteristics. A number of elementary autorotation indices have been
developed, generally based on the ratio of the rotor kinetic energy to
the helicopter power required, KE/P (KE is the energy available during
the descent, and P is the rate of energy decrease just after the loss of
engine power, thus a high ratio of KB/P is desired)., The problem is more
complex really, with many parameters of the helicopter design influencing
the autorotation characteristics. A difficulty lies in the necessity for
fly.ng the helicopter to the ground, which requires the choice of a control
schedure. A poor choice for the helicopter control can easily result in
an unacceptable landing, thus obscuring the influence of the design parameters,
Therefore this report considers the use of nonlinear optimal control theory
to establish the best control schedule, and thereby eliminate
the influence of the control choice. The result is a consistent method
for comparing and evaluating the power-off landing characteristics of
various helicopter designs.
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EQUATIONS OF MOTION

The optimization problem to be formulated is to find the control aiter
powe.: loss to arrive at the ground with minimum velocity, given the
heliccpter initlal altitude ho’ flight state, and basic parameters. The
helicopter is assumed to be in equilibrium level flight at the instant of power
loss, with rotational speed (L., rotor loading (CT/v~)°, and forward
speed Mo. The basic parameters of the helicopter design include the Lock
number ¥ , the rotor radius R, and the solidity ratio o . The aircraft
position 1s defined by the coordinates h and x, respectively vertical and
horizontal (see figure 1). It is convenient to measure h downward, so
h =0 at the initial altitude and h = ho at the ground.

The optimal control problem is best solved using an indeperdient
variable which has a fixed end point. Thus the independent variable for
the present problem must be tne hLeight h rather than time, since the
arrival at the ggound is defined by h = ‘no at ?n unknown time. The change .
of variables is accomplished using d( )/dt=hd( )/ah,oxr ( ) =h ( ).
The numerical integration which is required to solve the problem is still
best done with respect to time however (see below).

For the control variables, the magnitude and direction of the
rotor thrust are used, specifically the thrust coefficient CT and the
angle of the thrust vector to the vertical o< (see figure 1. It is
convenient to express the problem in terms of the vertical and horizontal
components of c,r. cz - CT cosex and Ex = CT sinok respectively. The
collective pitch control required to obtain this thrust may be then obtalned
from the blade eleme=. theory sxpression

a+ 38T + 2X30= 2,0

B1g =
j— at Q . »

It is not possible to obtain the longitudinal cyclic control from o< without
considering the helicopter pitch attitude and the rotor flapping also; the
primary interest here is in the flight path anyway.
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s The equations of motion considered to describe the helicopter descent
after power loss are those for vertical descent velocity ﬁ. horizontal
velocity X, rotor speed {2, and induced velocity v. A separate differential
equation 1s used for the induced velocity partly to allow consideration of

a time lag in the inflow response, and partly to simplify the incorporation
of the inflow curve (including ground effect) in the model. Vertical

force equilibrium (see figure 1) gives:

Mh = W - Tcosx +Dsinéd

orsincew=ngandf;-ﬁ£;ﬁ.

. v O
S W S

Horizontal force equilibrium gives

MX = Tsinot - D cos®

or

e 2 (TR - )

W

The helicopter parasite drag will be defined by an equivalent area f,
such that D = 4 & V£ then D sin® = -%‘g l:x(ﬁ2+ iz)%f, and D cos® =
%%i(ﬁzi-iz)%f (see figure 1), Rator torque equilibrium after the loss
of engine power is:

<2 = -Q

or
Q
1 4

where Q is the rotor aerodynamic torque, given by

@ = FOrEEF (FTYDOGraepd + FN

(reference 1). Here C’l’/ v‘s is the rotor stali 1limit (with n, a large number,
e.g. n = 20, so the profile torque greatly increases when the loading is above
¢/ e, ). The rotor advance ratio J and inflow ratlo 2\ are given by

i a
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The rotor induced velocity v is given by a differential equation which
includes a time lag = t

'1;'.: +vs= thfIfG
or g
vY = —v + wy bl
T L
The steady state solution is thus v = wv . f. .

h'l
Here v: = T/Z%A, W is an empirical factor (typically Kk = 1.15),

fI is the inflow curve, and fc is the effect of the ground.

For the inflow curve, the following expression is used:

- . W AZae3V N >
;:(‘,3)_.: J JT) -+ (v.+’{:)" p)

x(+373¢% +.gq3-)"-|-°m) 1 (zwﬂ"-h)” g1

where the parameters x and y are defined by

. = e % fmd — hRSK
>\ VA.
= P = iWSd -+ —': S
‘3 3N v
£ N
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The first expression for fI 1s the usual momentum theory result (ref. 1); the
second expression is an empirical approximation for the vortex ring

state (where the momentum theory breaks down). The region of roughness

in the vortex ring state is defined approximately by (2x+2)%+y%< 1.

To account for ground effect, the following expression is used (ref. 2):

costé
CED

Se = | —

Here z is the rotor height above the ground, z = h - h + 2, (zo is the
rotor height for the aircraft on the ground); and € 1is the angle of the
wake to the ground,

. (—& + vessa)d®
ws € = —_—
(b aventot D2 + (% + viwa )2

DIMENSIONLESS EQUATIONS

Now the equations will be made dimensionless using the quantitles
JS » S20, and R, The four degrees of freedom are Jefined as follows:
d = h/SUR
e = x/Q.R
= /S0,
1= v/O0R

and the control variables are cz - CT cos ot and (‘.x = CT sina¢ .+ The
four differential equations are then:

a° %:(|-§w*_%%téw>

c’fg

]

2
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4
= Za [+ ke % ]
whers g = g/ﬂczk. =St , = (01/2)%. Cr, = W/,S A(ﬂbﬁ)z; and

m= o, [eCq +dCx ]

2
= oG, (e —aCe s +

Fer fI and fG in the inflow equation, the following quantities are required:

" = ey - 4%s
w C-r”z/r{
- eCz +4Cx
\3 w Cvnz/w
T (-3C ‘QC!SL
cos €& =

—(-.- Acr +RCD? + (eCr + 2 D)

Finally, the initial conditions (for level flight) are d = 0, e = Mo s
=1, and R =92, -vo/&.,R at h= 0,

CRITERION

The optimization problem is to arrive at the ground with minimum
vertical and horizontal velocity. Thus a quadratic cost function of
the following form is used:

I=d (RS + v xF)
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where ﬁf and X, are the velocities at the ground (h=h ), and ¥ _1is the
welghting function of horlgzontal velocity relative to vertical velocitiy.

Now since h = 3‘; (‘}f'xz) = g(1 - Tcosot /W + Dsin® /W), there follows

'z &
3iT =g G- TR beme g

and similarly
e 2 - x“ . 2‘ " "
2% = ;_.Lx:-f-sou&a:-.é,f-l-&gfix&&
% » TS heosd
1:2 = Feo B

So an equivalent cost function iss
w

- 389:0 [“_ Twsal B%e) +W,%(T%d—b—t-s—e)]ﬂa

in terme of the dimemsionless quantities then,

Yo 1 N
To g S (- Bt BB ST

Cx cr,
P (e )T

The control problem is to find c‘ and cJt as a function of h to mininize J,
subjuct to tue constreints defined by the differential equations above.
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NONLINEAR OPTIMAL CONTROL

Consider a system defined by the nonlinear differential equaticn

' -—b
X =3(%, 0, h), where X is the state vector, U is the control vector,

and h is the independent variable; and a cost function J = 3\;" »(%, 9, h) dn.
It is assumed that the initial conditions -;(hi) are given, and .that h1

and h, are fixed., The optimal control problem 1 to find (h) +o ninimize J.
The solution (see reference 3) is defined by the followirg sst of equations:

2= a

v o2 b
s - (5507 - %
2K

(Yo e

sL
i

with houndary conditions x(hi) = x, and p(hi.) = 0,

i

For simple problems, tne equation H/ 3R = 0 1s solived directly
for U as a function of X, P, and h; and T is substituted into the first
two equations. The differential equations are then integrated, using the
boundary conditions to eliminate integration constants. Then the solution
for X is the optmi path, and 7 gives the optimal control law u(h).

The present problem is too complex for such a procedure, £0 a
steepest descent algorithm is used to solve the two point boundary value
prodblem (reference 3), A cycle in the algorithm consists of the following
steps. A current estimate of the optimal control law, ﬁm , 1s available.,
The differential equation %7 =2 is integrated forward from hi to h, using

f
2™ and the initial consitions on X. Next the differential equation

7’ = - 3K/3F 1s integrated backward from h, to h, using x, 3, and
the fimai conditions on . Fimlly, (2 H/AW)'™ is evaluated using X, P,

and 07 ; and the control is incremented by -
OO ey N

>
where ) 1s a satep size, chosen (by trial und error) such that i solution

-0~
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converges fast enough without overshooting. This process is repeated

until the solution ccnverges to the optimum, as indicated by the cost

J approaching a minimum. Such a steepest descent procedure has the advantage
of not being sensitive to the initis) guess for the contrcl; the convergence
slows down as the minimum is app..achel however.

OPTIMAL CONTROL PROBLEM

The optimal contrcl problem for the power-off deacent and landing
of a helicopter is obtained by applying nonlinear optimal control theory
to the dimensionless equations given above. The formulation using h as the
independent variable is required since the finmal height is specified, rather
than the final time. It is still preferable to do the actual numerical
integration using time as the independent variable however, to.eliminate
the singularity which occurs at d = 0 (such as at the start of the maneuver)
is h is the inc-vendent variable. Therefore after the differential equation
for ifis opbtained, the coordinate transformation is made back to t, using
a( ) =( ) . Itis also necessary then to integrate h = dfR to obtain
the proper variable h (and also x = ef)R to obtain x(t) ). The resulting system
of equations for the optimal control problem is then as follows.

A) y (3°(‘_ Cz Wt ‘%f’_f J,/d‘l_’_et )

Cry C—‘!’e

1
e = Yo ( = Lt - lly e Jdteer >

vy Corg

" — L. [%(\+("S§)l+(i‘:%7“‘)(""4"",")+?.—’.'X]

20 = o[- Wy b, ]
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ath=h P; = Py = Pes

e AT L PRI < TOT VAN | TR | MRS RO T

V\"W‘M.M P . - pros—
p
o )

-1 )
%\ _ NX .
G- o

'6‘):1.&:20
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where
Qo =
Q, = c—% L2 +
Sa =
S = Ke§g(

/
1454 23've -W;e“ AT
o Ton e ——— o
3 CT.A( \IJ‘.,.‘L. )+3 *d c’l’o

LA ( e Wy (2ed %3
Jaivet

Crg
C
— 3,2“3 (" —C%. +Wx 3 c,,,)

o

e

?_l
W’ 30 C‘I’o ei

< [l+(6%._1)‘+ (Crlo-' )“s]

(1-';

Cele N\ ] |+ 4ot
e

c-m Sl

38; G bﬁr. C); )

Kh o bafe + Kdhe (T & — 5 &

iz Cq

o

Cx
a+}3¢7

and the matrices B and C are defined as follows.
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These equations are solved by the steepest descent method outlined
avove, The pilot reaction time tp is included by constraining the collzctive
pitech to have the inlitial value for t < tP. Then the control is given by

ca Q-pte gDy — 33 U= 3
V3

Cy =

2
Assuming o< 1is unchanged for t < tp, then C x/cz = °xo/°zo = (4f/Apm )/CT0°
Typically tP ¥ .75 sec (although handling qualitles specificatons may
require the use of a larger value).

DESCENT FROM HOVER

Consider the case of optimal descent after power loss in hover,
hence with initial conditioan M = O. The solution of the above equations
willbeshowntobecx-Oande=0(o< = 0and x = 0),

Assuning C_ = e = 0, it follows that m= 0, y = 0, AfI/Esy =0
(1.0 22iPp=0at m=0), and £, is a function of h only. The
differential equation for e becomes & = 0, with solution e = constant = 0
(using the initial condition e = Mg = 0). The differential equation above for

P, beooges then pev = go(é% /cTo)Pe' which has solution
5IA
pe(n,) exp [ &, A (hon )]

OT P, = 0 since the final conditions on p glve Pe (h 0. Then bﬂ/éc =

g, (bD / d CTo)p = 0, as required for the optimal solution. The remaining problem
has then only three degrees of freedom (d, ¢o , and Q ), one control variable

(Cz = CT), and threee components of f(pd. P » ard Dy ). While eliminating

e, Cx' and Pg from the problem is a significant simplification, it is still
necescary to integrate numerically and lceiate to find the optimal solution,

Thus the optimal contrel solution for descent from howver after power
loss is a purely vertlcal flight path. The same concluslion was reached from
the flight tests reqorted in reference 4, although in practice a small amount !
of forward speed is required, both to avoid the vortex ring state during (
flare and to keep the landing point in sight. &
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RESULTS AND DISCUSSION

The optimal descent of a helicopter after power loss has been
calculated for a number of cases., Because it is found both by flight
tests and from calculations that an initial forward velocity greatly
improves the autorotation characteristics, results are given here only
for descent from power loss in hover (which as found above involves
a purely vertical flight path). The helicopter considered is one for
which flight test data are available., Three values of the rotor lock
number are consicered, from K- 4,5 (the standard rotor) to § = 2.6
(a rotor with heavier blades, investigated specifically for better
autorotation characteristics). Figure 2 shows the vertical veloclity at
the instant of contact with the ground, after optimal descent from power
loss in hover at varous altitudes. These calculations are in agreement
with the flight test results. Specifically, it was found in reference &
that the autorotation characteristics greatly improved for the heavier
rotor (the autorotation characteristics for the helicopter with ¥ = 4.5
are poor in this altitude range, while the characteristics of the helicopter
with & = 2.6 were found to be very good); and the critical height with
¥ = 2.6 was about h, = 30m,

Figure 3 presents in detail the optimal solution for power-off
descent from hover at an altitude of h = 30m. Figure 3(a) gives the
collective pitch control required as a function of time (note that a pilot
reaction time of .75 sec is used). These results again agree genmerally
with reference 4, which found in flight tests that the collective shouid be
dropped  immediately, followed by a gradual increase for flare (in figure
3(a) the flare begins when the helicopter is about 20m above the ground).
Figure 3(b) shows the rotor C,P/v‘ as a function of altitude (the control
variable actually used in the solution procedure). A stall limit of
GT/Q‘ g = +15 was used, which results in a leveling off of the control
Just before it reaches that value; the high torque due to rotor stall
greatly slows down the rotor, and thus values of c,x/r above stall are
not called for until just before ground contact. Figure 3(c) shows the
helicopter vertical load factor (nz = [Cau™ 4+ 34)A QAT+t 31/ Cro)s
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figure 3(d) shows the rotor speed, as a fraction of the initial value; and

. figure 3(e) shows the vertical descent velocity (the rotor is operating
in the windmill brake state w:en the velocity is increasing, and in the
. vortex ring state at the end of the maneuver when the vslccity is decreasing).

Finally, figure 3(f) presents the flight path for the optimal descent;

note that the principal influence of Lock number is on the final portion of
the flare for these cases, where the extra kinetic energy in the heavier
rotor allows a greater reduction in velocity.

Figures 4 and 5 ‘present a comparison between flight test results
(unpublished data from the program reported in reference 4), and the
calculated optimal power-off descent from hover. An optimal flight path
was not flown in the tests of course, and in addition some forward speed
and cyclic flare were invelved. Even so, the correlation is qualitatively
good. The most important discrepancy is that the rotor speed in the flight
tests ‘loes not initially decrease as fast as in the calculations. Zxamining
the flight test data, it is found however that the engine torque does not !
decrease to zero immediately after the throttle chop; in fact, the torque
remains above 25% of full power until the helicopter has descended about i
i15m. Adding to the analytical model an exponential lag in the sngine
power drop greatly improves the correlation in figures 4 and 5. While
again one should not look for too much correlation here, the lower vertical
load factor in the flight tests during the collective flare suggests that
the ground effect might be stronger than was used in the model, perhaps
due to the helicopter vertical velocity (the cyelic flare may be influencing
the measured n_ also however).
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CONCLUDING REMARKS

An optimal control solution has been obtained for the descent
and landing of a helicopter after power loss. A comparison with flight
test results shows sufficient correlation, even quantitatively, to verify
the basic features of the model, The influences of parameters such as
altitude and Lock number are correctly given, and the proper characteristics
of the control technique are obtained. This model should thus prove to be
a useful tool for evaluating and comparing the power-off landing
characteristiocs of various helicopter designs.
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h, = 30m, for three values of rotor Lock number X,

(R = 5.38m, LR = 199 m/sec, (J.P/v-o = ,063, and

)
‘ Figure 3 Optimal power-off descent from hover at aliitude
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Figure 4 Comparison between flight test data and optimal power-off descent
from hover at altitude h = 30m. (R = 5.38m, £2R = 199 m/sec,
G/, * 1057, o= 048, ¥'= 2.6)
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Figure 5 Comparison between flight test data and optimal power-off descent

from hover at altitude h = 38m. (R = 5,38m, S2R = 1 ,
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